Harmonic Archimedean and hyperbolic spirallikeness

نویسندگان

چکیده

Abstract We define a harmonic functions called Archimedean spirallike and hyperbolic functions. investigate their geometric analytic properties. Some examples are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On characterizations of hyperbolic harmonic Bloch and Besov spaces

‎We define hyperbolic harmonic $omega$-$alpha$-Bloch space‎ ‎$mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}‎},$$ where $0leq gammaleq 1$‎. ‎Similar results are extended to‎ ‎little $omega$-$alpha$-Bloch and Besov spaces‎. ‎These obtained‎...

متن کامل

Harmonic functions on hyperbolic graphs

We consider admissible random walks on hyperbolic graphs. For a given harmonic function on such a graph, we prove that asymptotic properties of non-tangential boundedness and non-tangential convergence are almost everywhere equivalent. The proof is inspired by the works of F. Mouton in the cases of Riemannian manifolds of pinched negative curvature and infinite trees. It involves geometric and ...

متن کامل

Harmonic Maps between 3 - Dimensional Hyperbolic Spaces

We prove that a quasiconformal map of the sphere S admits a harmonic quasi-isometric extension to the hyperbolic space H, thus confirming the well known Schoen Conjecture in dimension 3.

متن کامل

Harmonic Morphisms from Even-dimensional Hyperbolic Spaces

In this paper we give a method for constructing complex valued harmonic morphisms in some pseudo-Riemannian manifolds using a parametrization of isotropic subbundles of the complexified tangent bundle. As a result we construct the first known examples of complex valued harmonic morphisms in real hyperbolic spaces of even dimension not equal to 4 which do not have totally geodesic fibres.

متن کامل

CONVOLUTION CONDITIONS FOR SPIRALLIKENESS AND CONVEX SPIRALLIKENESS OF CERTAIN MEROMORPHIC p-VALENT FUNCTIONS

In the present investigation, the authors derive necessary and sufficient conditions for spirallikeness and convex spirallikeness of a suitably normalized meromorphic p-valent function in the punctured unit disk, using convolution. Also we give an application of our result to obtain a convolution condition for a class of meromorphic functions defined by a linear operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2022

ISSN: ['1664-2368', '1664-235X']

DOI: https://doi.org/10.1007/s13324-022-00745-y